NUMERICAL SOLUTION TO THE PROBLEM OF
THE COMPLETE STABILIZATION OF A
SUPERSONIC BOUNDARY LAYER

S. A. Gaponov and A, A, Maslov - UDC 532.501.34:532.517.2

A method is suggested for solving numerically the problem of the complete stabilization of
a supersonic boundary layer., It is shown that when the surface is significantly cooled, the
neutral stability curve splits into two branches. A calculation is given for the temperatures
of complete stabilization for both neutral curves. A comparison of the results obtained with
those derived from asymptotic calculations shows that above M =2 (M is the Mach number)
the asymptotic method gives incorrect results,

1. Lees {1] was the first to show that intensive cooling can ensure the complete stability of a super-
sonic laminar boundary layer to small two-dimensional perturbations. Calculations of the critical values
of the surface temperatures required for the complete stabilization of a boundary layer at a flat plate have
been made by an asymptotic method {2-6]. The authors of this paper are not aware of any numerical solu-
tion to the problem.

In the formulation of the asymptotic method used in all the above papers, it is required that the expan-
sion parameter £ =(x R)~Y! 2, where o is the perturbation wave number and R is the Reynolds number, should
be small in comparison with unity, However, for Mach numbers of 2-6, ¢ varies from 0.34 to 0.47, i.e., it
is not small, Therefore the results obtained in these papers for M > 2 may be incorrect.

In this paper we suggest a method for solving numerically the problem of the complete stabilization of
a boundary layer; this method does not require any restrictions on the value of aR.

2. From the asymptotic equations of Lees [1], which are valid for small supersonic Mach numbers, it
can be shown that the values of oR on the upper and lower asymptotic curves of neutral stability tend to fi-
nite and different limits. As the surface temperature is reduced, the critical Reynolds number R* goes up
and the two branches of the neutral curve get closer together, thus reducing the instability region. At a
certain critical temperature T* the branches merge and the values of @R on them coincide. Then there
must exist in the (T, aR) plane a curve of values of aR on the asymptotes on which the minimum value of
Ty gives the temperature of complete stabilization T For lower temperatures in a laminar boundary
layer of a viscous thermally-conducting gas, neutral or unstable supersonic perturbations cannot exist [1].
In order to construct the curve of the values of oR on the asymptotes, we use the Dun and Lin system of

equations [4]. Since on the asymptotes we can take [1]
o =0, R= oo, af = const
the Dun and Lin equations take the form -
p° [ (U° = e)u + U, v) + 751";—2 =-tou, 1
P,=0 '
U —c)p+p, v+ 0°(iu+v,) =0

O U — )8 Tyv] + (r — 1)+ v,) = o By
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Here U®°, p°, and T° are the time-averaged velocity, density and temperature; u, av, p, 6, and P are
the perturbations in the longitudinal and transverse velocities, density, temperature,and pressure; y is the
distance along the normal to the surface, the subscript y indicates differentiation, v is the adiabatic con-
gtant, M is the Mach number, ¢ is the Prandtl number, 1 is the viscosity, R is the Reynolds number, « is
the wave number of the perturbation, and ¢ = ¢, + ici is the perturbation phase velocity (at the asymptotes
¢c=1- M1, Ttis assumed that the perturbations vary with the longitudinal coordinate x and the time t in
the form exp ia - ct). A similar limiting transition for calculating the values of R on the asymptotes of
the neutral stability surface for incompressible liquid flow is used in [7].

The boundary conditions for the svstem (1) can be taken in the form

u(0) = v (0) <8, (0) =03 @)

u, v, and 8 are bounded as y —, If would appear that the more correct boundary condition on temperature
perturbations should be 6(0) = 0. The choice of the condition 8y(0) = 0 can be explained by the fact that this
case has been better studied by asymptotic methods. We can therefore make a detailed comparison of the
results and give a more correct decision on the applicability of the asymptotic methods.

By introducing the variables

By == U, 2y = Uy, %3 =U, 5, = PlyM? z2,=8, z, = v

we can reduce the system (1) to the six first-order equations

[
Zy = Gz (i=1,...,86) @)
j=1
with the boundary conditions
2(0) = 25(0) = 7 (0) = 0 @

and z,, %3, and z; are bounded as y — .

Outside the boundary layer the system coefficients are constants,and the solution has the form
5 .
2, = Dy C;APNY
j==1

where A takes the values
Mg =5V R IM, Ay = +ViaRs /M, hge=0.

Since the solutions with A, and A do not satisf{y the boundary conditions at infinity, Cy and C; must be
identically equal to zero. The characferistic vectors A® and A® have only three nonzero components each:

AP =1, AP =%, AP =—i/h,

5
AP =M, AP b, AP N

The characteristic vectors corresponding to Az and A, are conveniently taken as
: AP =M, AP =4P=0

AP =Cy, AP =1, AP =(r—1HM>. (&

Comparing the solution of (3) on the edge of the boundary layer (5) and (6) with the solution of the com-
plete system of stability equations for y = 6 (5 is the thickness of the boundary layer) with ¢ = 0, ¢ = 1-M"!
[ 81, we can see that

VI—M{d —<cf .

C,= lim 5

a-->0, c->1—M~—1
The existence of such a limit has been shown in the asymptotic solution of the problem of complete
stabilization [9].

Each of the three vectors A0 is used as initial data in the numerical integration of (3) from the ex-
ternal surface of the boundary layer to the wall. If the parameter in front of the leading derivative (aRr)~?
becomes small, the numerical integration can be carried out by the orthogonalization method of Godunov
[10]. During the calculation the values of @R, Ty, and C; were chosen so as to satisfy for fixed
M the homogeneous boundary conditions on the surface of the plate [11].
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3. We took the values o = 0,75, v = 1.4,and p = T°. In order to determine the U°, T°, and p° — the
velocity, temperature,and density dist-ibution of the main flow — the equations of a laminar boundary layer
on a flat plate were also integrated numerically.

Figure 1a shows the lower branch of the neutral stability'curve for M = 2.2 and Ty = 1.82; Fig. 1b, c,
and d show the behavior of c,,, aR,and V1 - MZ(1 — ¢)¥/ & with increase in R. The limiting values of oR and
V1-— M- c)z/oz were obtained by numerical integration of (1),

Curves showing the variation of @R on the asymptotes with surface temperature are given in Fig. 2
for various Mach numbers. Tor M = 1.429 and 2.2, there is a temperature region in which four values of
aR correspond to each value of Ty; this means that two neutral stability curves can exist. Both of these
curves were calculated from the Dan and Lin system with M = 2.2 and Ty, = 1.606 (Fig. 3). At the surface
temperature for which there are three corresponding values of oR, these curves merge into each other.
The second curve 2 rapidly disappears as the temperature is reduced. . The first neutral curve 1 continues
to exist over a certain temperature range. As aR increases, the curves in Fig. 1 have asymptotes at a
certain temperature. It can be shown from the Lees and Lin [9] equations that this is the temperature of
complete nonviscous stabilization.

Ag the Mach number M increases, the complete stabilization temperature of the second neutral curve
2 approaches the complete nonviscous stabilization temperature, and the corresponding temperature of the
first curve 1 reaches a value even higher than this. When M = 3.2, the first neutral curve disappears alto-
gether,and only one curve remains,for which at the agsymptotes

a—0, ¢—1—~M71  aR->const.

The division into first and second neutral curves is quite arbitrary but it does enable us to follow the
changes in the instability region as Ty, and M vary.

Figure 4 shows the variation in the complete stability temperature with M. The numbers 1 and 2 indi-
cate the temperatures for the first and second neutral curves that we have obtained here. Curve 3 is the
temperature of complete nonviscous stabilization [3] and curve 4 shows the results obtained by the asymptot-
ic method [4].
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The complete stabilization temperatures of the first curve agree with the asymptotic calculations up
to M = 1.8, Above M = 2, there is not even qualitative agreement. The error which appears in the asymptot-
ic methods is not only due to the decrease in R (increase ine = (¢R) ‘1/2) .Despite the fact that above M=
2.7 the parameter aR obtained by numerical calculations begins to increase, the difference between the
numerical and asymptotic results continues fo get bigger. As M increases, the temperature perturbations
produce a greater effect on the variations in velocity,and this fact is not taken into account in the asymptotic
methods.
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